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Abstract-In this paper. the Green's function technique is used to develop a solution for an inlinite.
piczoel~'Ctricmedium containing a piezoelectric. ellipsoidal inclusion. The coupled elastic and ekdric
fields both inside the inclusion and on the boundary of the inclusion and matrilt are obtained. These
results are used to calculate the elTective constants of piezoelectric composite materials. It is found
that the coupted elastic and ek'Ctric fields inside the inclusion stay uniform when the eltternal elastic
field and electric field an: constant. As an eltample, the cylindrical inclusion is considered in detail
and some formulae for cakulating the effective constants of piezoelectric. unidirectional-fiber
composites arc obtained.

l. INTRODUCTION

Along with the widespre.td ..pplic.. tion of piezoelectric ceramics and piezoelectric
composites. how to determine the ctfects of defects ..nd inclusions on the properties of
such materi.. ls becomes one of the most import..nt problems in engineering. Gener.. lly...
piezoelectric ceramic material is a complex system composed ofcrystallites. grain boundaries
and pores••tnd it may also contain many visible cracks perpendicular to the poling direction.
Thc existence of these defccts greatly affects the electric. dielectric. piezoelectric. elastic and
mechanical properties of piezoelectric ceramics (Okazaki. 1985). In recent years. several
types of PZT-polymer composites have been fabricated to improve the piezoelectric prop­
erties of poled PZT (lead zirconate titanate) ceramics (Rittenmyer cl al.• 1985). How to
predict the effective constants according to their constituent properties becomes a very
important topic in the design of PZT-polymer composites. and the solution of all these
problems relies on the analysis of the coupled elastic field and electric field of a typical
inclusion in piezoelectric media. According to the author's knowledge, such a three-dimen­
sional analysis is not available at present.

This research attempts to obtain the coupled elastic field and electric Held of a piezo­
electric. ellipsoidal inclusion in an infinite piezoelectric matrix. Two main ditliculties exist
in such analysis. One is that the piezoelectric materials are anisotropic, and the other
difficulty is that the elastic fields and electric fields are coupled in such materials. In spite
of these ditfIculties, the Green's function technique proved to be an etfIcient method to deal
with such problems. By using the Green's function method, Kinoshita and M ura (1971)
obtained the elastic field for an ellipsoidal inclusion in non-piezoelectric. anisotropic media,
and Shintani and Minagawa (1988) have calculated the displacement and electric fields
produced by moving dislocations in anisotropic. piezoelectric crystals, Zhou cl al. (1986)
proposed the multipole function representation and used the analogy theorem to obtain
the elastoelectromagnetic field equations for a finite piezoelectric body with defects. Wang
and Liu (1990) have obtained a general expression for the coupled elastic and electric fields
ofan ellipsoidal inclusion in a piezoelectric matrix based on the Green's function technique.

In this paper. the coupled elastic and electric fields inside an ellipsoidal inclusion and
just outside the ellipsoidal inclusion are obtained. then these results are used to calculate
the effective properties of the piezoelectric composites. As a simple, but important example.
the elastic and electric fields of a cylindrical inclusion are investigated in detail. and some
formulae for calculating the effective elastic. piezoelectric and dielectric constants of piezo­
electric, unidirectional-fiber composites are obtained.
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2. FORMULATIONS

If the free charges and body forces do not exist in a piezoelectric body, the static elastic
and electric field equations can be written as (Maugin, 1988)

c,D, = 0, ( I )

(2)

(3)

(4)

where C is the elastic moduli tensor, measured at zero strain, e is the piezoelectric moduli
tensor and a is the permittivity of the dielectric material, and for transversely isotropic,
piezoelectric, ceramic materials, they contain five, three and two independent constants,
respectively. (J) and u in eqns (2) and (3) are the electric potential and the elastic displacement.
D and (1 in eqns (I) and (2) are the electric displacement and the elastic stress tensor.
Substitution of eqns (3) and (4) into eqns (I) and (2) yields

({'",,/u,., ).,., - (a,.,/I),1).,., = o.

(5)

(6)

Consider an infinite piezoelectric body with the elastic moduli C, the piezoelectric moduli
eO and the dielectric permittivity a O in which there is an inhomogeneous inclusion occupying
a region Q with constants C, e and a. 8y introducing the following notations:

(7)

(8)

(9)

the elastic, piezoelectric and dielectric constant tensors of the inhomogeneous medium can
be written as

where h(.~) is the characteristic function and defined by

{
I, .hQ

h.~ = .() 0, otherWise.

Substitution ofeqns (10), (II) and (12) into eqns (5) and (6) yields

By introducing the Green's functions G 1
, G 2

, fl, f2 as follows:

( 10)

(II)

( 12)

(13)

(14)

( 15)
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C;~kIG~p.lj +e~ijF;J'fj = -JipJ(.i-.i'),

o G 1 0 £.1 0ejkl kp.lj - Ojk pJk = ,

CO G2 0 F2 - 0ijkl k.lj +ekij Jcj - ,

o G~ 0F~ .I:(~ ~')ejkl k./j -Ojk Jk = -(J x-x ,

eqns (14) and (15) can be expressed in the form

U", =iG~j(x-.\")[(Ci~kluk.l+elij<llJc)h(.i')L·dx'

+ rG~(.i-.\")[(dIUk.l-oi;<lI.I)h(.\")J.r d.\" +u~
J..

([) =iF;' (.~ - .~')[(Ci:klllk.1 +dij(f).k )JzW»).,· d.\-'

+iFZ(.i - .i')[(ei~/lIk.1- O,;<lI.I)Jz(.\")J... d.\" +<J)o,.
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(16)

(17)

(18)

(19)

(20)

(21)

where u~ and $0 are homogeneous solutions of eqns (14) and (15). In the derivation of
eqns (20) and (21), the property of the generalized function h(.r) and the relation

(22)

is used.
By differentiating eqns (20) and (21), the equations of the elastic strain field and electric

field can be obtained in the form

rS2(~ ~')( I IE)d~'+1 ui X-.t" eik/6k/+ Oil / X. (24)
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where

S, W"-"G

(25)

(26)

(27)

(28)

In a general case. the explicit forms of the Green's functions G 1
• G~, F ' and F~ cannot

be obtained from eqns (16), (17), (18) and (19), Whereas the Fourier transform of the
Green's functions can be obtained easily, the Fourier transforms ofeqns (16), (17), (18)
and (19) are

e ll = =G lr(") ,0 = = F1T'(") _ )"kl"'<", kl''' +(kl,<"'''' l' " - ('l"

aO " =G 1r(") NO == F1T(") 0',k/<""" kl' " -"','''k'', l' '" = ,

(29)

(30)

(31 )

where

(32)

(33)

and Gt, ~~1 and F"1 can be determined similarly,
The eqns (29), (30), (3 I) and (32) can be expressed in the fourth-order matrix form as

(34)

from which we can tind

(35)

Substitution ofeqn (33) into cqns (23) and (24) gives

I, _I,ll - I" rd\','j'(G'I'.= = +GII': : )«(,1 /' - ,I £ )
~t,{l - "'1' 16rrJ Ju' /1/ r.,'~JI /1/ SI"~hJ //1')1 '~,J ("", m

xexp[i~'(,(-i')]d~- 16
1
rr 1 Ld.r' f(G,;I~'~I'+Glil'~,~.,)

X (er~II;'1 +at: Ell exp [i~' (,r - ,r')] d~, (36)

(37)
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In deriving eqns (36) and (37), the equation
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(38)

has been used.
If the inclusion occupies an ellipsoidal sub-domain Q, the integrals in eqns (36) and

(37) can be further simplified by following the same procedure as Mura (1982) in deriving
the elastic field of an anisotropic, ellipsoidal inclusion in non-piezoelectric media. We take
the following integral in eqn (36) as an example:

(39)

The integration with respect to ~.space is considered first. The volume element in ~­
space. de is

(40)

where

(41 )

and dS(w) is a surface element on the unit sphere S2 in the ~.space. Then eqn (39) is
written as

(42)

In the above integrals, the following equations

(43)

have been used.
If the crystalline directions of the anisotropic materials coincide with the principal axes

of the ellipsoidal inclusion, the region Q is expressed by

(44)

The following transformations of variables are used to simplify the calculating procedure:



B. WASG

The volume element d.~' is

(46)

Substitution of eqns (45) and (46) into eqn (42) gives

where R = )I=Z'.
Let us consider the case when point .X- is inside the ellipsoid or point J' is inside the unit

sphere. Since the boundary values of the integration by parts vanish, after twice integrating
by parts with respect 10 Z, egn (47) becomes

{

(1 }, (1- Z '1 (_,1;1 _. f I / _, I ..• /
• 1Z«('/'·/,I:..·/. (""/£.,,,) ZlZtC'iYPl:y/. tmIIE",}r~R

G r ~ R G

where the upper index' refers to the field values for interior points. It can be seen from
(48) that if /;/ and E/ an: constant, '"If is also a constant, and determined by

where

(50)

The other integrals in eqns (36) and (37) can be coped with in the same manner as la~' Since
the solutions of eqns (36) and (37) arc unique, we can conclude that if a piezoelectric,
ellipsoidal inclusion in an infinite piezoelectric matrix is subjected to the uniform elastic
field e2~ and electric field EO, the elastic field and the electric field inside the inclusion remain
uniform. Such a conclusion is also well known in electricity (Maugin, 1988) and elasticity
(Eshelby, 1957).

Furthermore, the surface clement dS(li',) can be written as

(51 )

Then eqn (49) is written as
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where

and

By using eqn (52), eqn (36) and (37) can be expressed as

E' EO 1 N2 (C I I lE') 1 NJ ( I I lE')u = u + 41t jiu ijklf.kl - eklj k + 41t ul e,klf.kl +ail I ,

where

II i2.1 - 21" ~Njj = dW.l F (w)w,w, dO.
- I 0
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(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

If the matrix is a transversely isotropic piezoelectric material (with X, in the poling direc­
tion), the non-zero components of N I, N2, N J are shown in the Appendix.

In the same manner, the coupled strain and electric fields outside the inclusion can be
obtained through eqns (36) and (37). The jumps of the strain field and the electric field on
the inclusion boundary are given by

[Eal = E; -E~

= -GlT(ii)[nJqklf.~/nU-nje~/jE~nu]

F2T(~)[ I I + I E' ]- n nmemljf.ljn" nmaml In",

(60)

(61)

where BE and EE are the strain field and the electric field just outside the inclusion, and
G~/(ii), G;T(ii) and F 2T(ii) are determined byeqn (34) with the replacement of ~ by ii, here
ii is the outward normal on the inclusion boundary.

Equations (60) and (61) can also be obtained directly through the boundary condition
between the inclusion and the matrix as follows:

(a) Elastic field: The displacement and the interfacial traction across the boundary
must be continuous, that is
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From eqn (62), we know
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u: = uf, (62)

(63)

(64)

where 6., is the proportionality constant to be determined.
(b) Electric field: The electric field and electric displacement across the boundary

should satisfy the following conditions

nj(D,t" - Dr) = o.

From eqn (65), we know

[£;] = £t" - £: = j.n j •

Substituting the constitutive eqn (3) into eqn (63). one obtains

Substitution of eqn (4) into eqn (66) yields

Substitution of eqns (64) and (67) into eqns (68) and (69) gives

from which we obtain

(65)

(66)

(67)

(68)

(69)

(70)

(71 )

(72)

(73)

Substitution of eqn (72) into eqn (64) and eqn (73) into eqn (67) gives the same results as
eqns (60) and (61). The coupled elastic and electric fields just outside an inclusion can be
evaluated from eqns (60) and (61) when e:, and £: are known.

If the strain field and electric field inside an inclusion are known. the effective elastic.
piezoelectric and dielectric constants of piezoelectric composites can be calculated as fol­
lows:

Definition. The effective elastic, piezoelectric and dielectric constants of piezoelectric
composites. C~kl' £:..,and at, are defined by the following equations:

(74)

(75)

where the symbol <) denotes the volume average.
From eqn (74). it can be written that
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= ~ ladl'f v '1
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(76)

where l'r is the volume fraction of inclusions. In the derivation of eqn (76), the interactions
between inclusions are neglected. In the same manner, from eqn (75), we obtain

(Dk ) = a:,(E1) +e:ij (f. iJ )

=a2,(E,> +e2i; (f.;,> +vla~,E: +vle~ijf.:j' (77)

3. CYLINDRICAL INCLUSION

As an important example, the cylindrical inclusion is considered in detail. Both the
inclusion and the matrix are assumed to be transversely isotropic. Their non-zero constants
arc

(78)

and WI = cos O. W2 = sin 0 and w) = 0, where 3-axis is the symmetric axis. In such cases,
from eqn (34). one obtains

IT ~ 2C~lsin20+(C~I-C~2)Cos20 2
GII(W) = CO (CO CO) a,

II 11- 12

GJT{~')-GIT(~.)- _(C~I+C~2)sinOcosO 2
12 II - 21 1\ - CO (CO CO) a.

II 11- 12

o
GIT(~. _ all 2

j} 1\) - CO 0 +( 0 ) 2 a ,
44011 e"

(79)

(80)

(81)

(82)

where eqns (53) and (54) are used, and the other components of Gi~T(w) are zero. and a is
the radius of the cylindrical inclusion cross-section

(83)
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(84)

Substitution ofeqns (78)-(84) into eqns (57), (58) and (59) yields the non-zero components
ofN I

• N 2
• N J as:

(85)

(86)

(87)

Substituting cqns (85). (86) and (87) into cqns (55) and (56), onc obtains the equations for
dctcrmining thc coupled strain and electric fields inside a cylindrical inclusion in the form
of:

(89)

(90)

(91)

(92)

(93)

(94)
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E l _ 2[C:4a~ I +(e~ s)2JEg +2(e~sCi.l-ei4C:4)~3

2- 2[C~4a~I+(e~s)2J+C~4a:l+e~se\s '

E~::: E~.

303

(95)

(96)

To obtain the effective elastic, piezoelectric and dielectric constants of unidirectional fiber
composites, the following procedures are taken:

(a) Only g~3 7< O.
From eqns (88) and (89), one obtains

I I Ch 0
&11 = lh,::: - 2Co CI C 1 en·

11+ 11+ 12

According to eqn (76),

(O'n) = CfmS~3

::: C73S13 +v/CLs~ I +v/Chei2 +V/C!3S~h

from which one obtains

In the same manner, one obtains

(b) e~1 = f.~2 7< 0, and e~2 '# O.
From eqns (88) and (89), one obtains

and eb is given by eqn (93). Therefore

<0'11>::: CTle~I+CT2eg2

::: C~le?1 +C?2e~2+l'IC:le~1 +l'fC:2e~2'

(0'12> = 2C:6e~2

= 2C~6e?2+2vfCl6eb

(97)

(98)

(99)

(100)

(101)

(102)

(103)

and one can obtain

CT,+CT2::: C?,+c12+1v/(CI,+CI 2)x 2Co ~?ll C 1 ' (104)
11+ 11+ 12

and

$AS 29:3-C

[
3Co CO ]-1o I It- 12 I

=2C66 +2v/C66 1+ 2C?I(C?I-C?2) C66 . (105)
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In such a case. from eqns (91) and (95). one obtains

(a~,> = 2C!'~'£~1

= 2C~4t;~3 + 21'1 C Lf:'~3 -1', c~J E~. ( 108)

Substitution ofeqns (106) and (107) intoeqn (108) gives C!J'
According to eqn (77). the effective piezoelectric constant e!J can be obtained from

the following equation:

( 109)

(d) E': f. O.
From eqns (9(,) and (76). one obtains

(110)

where I:: I is determined by equations (XX) and (X9) as

(II I)

Therefore ct\ is given by

(all> = -diE':

-e'i I E~ -1'/£'\ I E~ +l'/(C: 1+ C: ~)I;JII'

Substitution ofeqn (III) into eqn (113) gives

rrom eqn (77). we know

Substitution ofeqn (III) into eqn (114) yields

( 112)

(113)

( 114)

( liS)



Analysis of ellipsoidal inclusion in piezoelectric material

Table I. Materials propenies of a piezoelectric ceramic PZT-6B and polymer
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Elastic stitrnesses Piezoelectric coefficients Dielectric constants
(10'· Nm-~ (c m- Z) (1O'·cvm-')

COl Cn C•• C'l C,l eJl en ell IX" IX))

PZT-6B 16.8 16.3 2.71 6.0 6.0 -0.9 7.1 4.6 36 34
Polymer 0.45 0.45 0.11 0.24 0.24 0 0 0 0 0

(e) E? # O.
In such a case, a~1 can be determined from the following equation:

(D ,>= aT,E?

=a?IE?+vfaIIE~ +vfe:5f.~J'

( 116)

(117)

where E: and 1:: J can be obtained through eqns (92) and (94).
Although every effective constant of piezoelectric, unidirectional-fiber composite has

becn obtained. one has to bear in mind that all these analyses have neglected the interactions
bctwecn inclusions. To obtain thc morc accuratc results. one can use some approximate
methods. such .IS the self-consistent schcme. etc. to consider the interactions.

As an example. a piezoelectric ceramic PZT-6B which contains unidirectional polymer
fibers along the poling axis (Xl-axis) is considered in dctail. Thc engineering material
constants for PZT·6B and the polymer arc listed in Table I. (Shindo and Ozawa. 1990.)
The polymer is assumed to be an isotropic material with negligible piezoelectric constants
and dielectric constants.

The most important constants of the composite in engineering are e!), a! and the
hydrostatic coefficient e: (= e!)+2e~.d. By using eqns (112), (114) and (116), they are
obtained and shown in Fig. I versus the volume fraction of polymer.
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Fig. I. The effective constants versus the volume fraction of polymer.
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4. CONCLUDING RE~tARKS

In this paper, a solution is developed for an infinite. piezoelectric medium containing
a piezoelectric. ellipsoidal inclusion. The coupled elastic and electric fields inside the
inclusion are obtained, and it is found that they remain uniform when the external strain
and electric fields are constant. which has again confirmed Eshelby's proposition. The
coupled elastic and electric fields on the boundary of the inclusion and matrix are also
obtained. By neglecting the interactions among inclusions, the above results are used to
derive the effective constants of piezoelectric composite materials. As an example. the
cylindrical inclusion is considered in detail. In such a case. the explicit form of the solution
is obtained. and some formulae for calculating the effective constants of piezoelectric.
unidirectional-fiber composite are derived. It is found that the commonly-used rule of
mixture for determining the effective dielectric and piezoelectric constants along the poling
axis is not true due to the coupled effects.
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APPENDIX: THE NON·ZERO COMPONENTS OF N'. N'. N'. FOR A SPHEROIDAL
INCLUSION IN A TRANSVERSELY ISOTROPIC. PIEZOELECTRIC MATRIX

For transversely isotropic. piezoelectric matrix. the non-zero material constants arc shown in eqn (7K).

Therefore

, I ' fI , f,..v ~, cos' V+ N\ , <:os' 0
N""=N,, .. =2/J· (I-wj)dwj '0 '0 C dO•

.... n 0 A cos + B cos' +

I I" f" Nh cos' 0+ N~j cos' 0+ N'll d'JN"'J=2 WjdWj , ' <.
> ,,' 0 A cos 0 + B cos' 0 + C

I I f" Ih N~,COS:O+N",
N llJJ "'Nl'H=2 wjdw J '0 B '0 C dO,

• 0 " A cos + cos' +

f' I" :IJ('" '0 N B :IJ+NC)I , • : cos., JJ cos + J) cos JJ dlJ
N JJIl := N lJn = 2p' " (l-wJ)dwJ " Aeos'O+Beos'O+C '

(AI)

(A2)

(A3)

(A4)

(A5)

(A6)



where
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1, l'"N.'(J N B '(J N', _.., I d • .. cos + .. cos' + .. d(J
NJ.\-. WJ WJ A'(J B '(J C .

Q Q cos + cos' +

A '" a"h1,c,d. -a"h1,c.eiJ +ai,c,d.-a;,c.ei, +a"ei.h;, -a"bllh""-ll-a:,aJlb.lld.

+a:,o"h.,"-,-a"bll h.,c.+a"c..b;, +c.a:,a.,h J , -c,a:,a.,h., -al,a.llbll d.

+a:,a.,h .. ,ei.. - aloh1,d. + a"a.,h:,tlJ +(11,tlllh.,c. -a:,a.,h.,c, + (/lla.,h1,c.

-a;lhzlcl-C1~,h;, +a.'lcl~lhllh"l +tl,11tl"lh"h. 1 -ll~lh~l.

B", c,tI.(a"hn +a ll h1,) -c."-,(a"h:1+al,h1,) -ai,c,d. + a; ,c."-,

-h;,d.(a" -a,:) +h ll h.,tI,(a" -a,:) +a:,tI"bll d. -a:,a"h.,d,

+ (II" -II,:k.h "h.,-c,b;,(a" -a,:) -('.a:,a.,h" +(',a:,a.,h.,

+a: ,II "b"tI. -a:,a.,h"tI,- II "II "b::ei. + II "a.,h::tI,-a:,a "b.,c.

+ II: ,1I.,h.,c, + II "a.,h ::.... -ai ,hn ... )+a; ,hi, -1I1l1l.,bllh.,

-1I"a.,h"h., +ai,hi,.
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(A7)

(AS)

(A9)

(AIO)

(All)

(AI2)

(A 13)

(AI4)

(AIS)

(AI6)

(AI7)

(AI8)

(AI9)

(A20)

(A21)

(A22)

(A23)

(A24)

(A2S)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)
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and
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all = Ihl-w;HC\',-c2.),

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

(A3S)

(A39)

(MO)

(MI)

(M2)

(A43)

(M4)

(<\45)

(1\-16)

(A47)

(t\4S)

(A4'J)

where II is the aspeet riltio of the spheroidal inclusion. The integrals with resped to U in eljns (A I) (A 12) can be
obtained by the residue ca1cul;ltion in a complex Z-plane. where

cos(}=(:+:')/2. sin(} = (:-: ')(21), dO=d:/I:. (t\50)


